CLI Applications
Production-ready terminal applications for document processing, knowledge extraction, and text evaluation.
Overview
AbstractCore includes three production-ready CLI applications that work directly from the terminal without any Python programming. These tools provide immediate access to advanced LLM capabilities for common text processing tasks.
📄 Summarizer
Intelligent document summarization with multiple styles and lengths
summarizer document.pdf --style=executive
🔍 Extractor
Knowledge graph extraction with multiple output formats
extractor report.txt --format=json-ld
⚖️ Judge
Text evaluation and scoring with customizable criteria
judge essay.txt --criteria=clarity,accuracy
Installation & Setup
Apps are automatically available after installing AbstractCore:
# Install with all features
pip install abstractcore[all]
# Apps are immediately available
summarizer --help
extractor --help
judge --help
Usage Methods
Each application can be used in two different ways:
✅ Direct Commands (Recommended)
summarizer document.txt
extractor report.pdf
judge essay.md
🐍 Python Module
python -m abstractcore.apps.summarizer document.txt
python -m abstractcore.apps.extractor report.pdf
python -m abstractcore.apps.judge essay.md
📄 Summarizer
Intelligent document summarization with multiple styles and lengths.
Quick Examples
# Basic summarization
summarizer document.pdf
# Executive summary with brief length
summarizer report.txt --style=executive --length=brief --output=summary.txt
# Technical focus with detailed analysis
summarizer spec.md --focus="implementation details" --style=analytical --length=detailed
# Large document with custom chunking
summarizer large_manual.txt --chunk-size=15000 --verbose
Key Parameters
Parameter | Options | Default | Description |
---|---|---|---|
--style |
structured, narrative, objective, analytical, executive, conversational | structured | Summary presentation style |
--length |
brief, standard, detailed, comprehensive | standard | Summary length and depth |
--focus |
Any text | None | Specific focus area for summarization |
--output |
File path | Console | Output file path |
🔍 Extractor
Knowledge graph extraction with multiple output formats and entity types.
Quick Examples
# Basic knowledge graph extraction
extractor document.pdf
# Focus on specific domain with detailed extraction
extractor tech_report.pdf --focus=technology --length=detailed --format=json-ld
# Extract specific entity types only
extractor article.txt --entity-types=person,organization,location --output=entities.jsonld
# High-quality extraction with multiple iterations
extractor research_paper.pdf --iterate=3 --length=comprehensive --verbose
# Fast extraction for large documents
extractor large_doc.txt --mode=fast --minified --output=kg_fast.jsonld
Key Parameters
Parameter | Options | Default | Description |
---|---|---|---|
--format |
json-ld, triples, json, yaml | json-ld | Output format |
--entity-types |
person,organization,location,technology,etc. | All types | Entity types to focus on |
--mode |
fast, balanced, thorough | balanced | Extraction mode |
--iterate |
1-10 | 1 | Number of refinement iterations |
Entity Types
🔧 Debug Capabilities and Self-Healing JSON
Robust debugging and error recovery features for production use.
Key Features
- Self-Healing JSON: Automatically repairs truncated or malformed JSON responses
- Debug Mode:
--debug
flag shows raw LLM responses for troubleshooting - Focus Areas:
--focus
parameter for targeted evaluation - Increased Token Limits: Default
max_tokens=32000
,max_output_tokens=8000
- Consistent CLI Syntax: All apps use space syntax (
--param value
)
Debug Examples
# Debug raw LLM responses for troubleshooting
judge document.txt --debug --provider lmstudio --model qwen/qwen3-next-80b
# Focus areas for targeted evaluation
judge README.md --focus "architectural diagrams, technical comparisons" --debug
# Automatic JSON self-repair with increased token limits
extractor large_doc.txt --mode thorough --max-tokens 32000 --max-output-tokens 8000
⚖️ Judge
Text evaluation and scoring with customizable criteria, contexts, and debug capabilities.
Enhanced Examples
# Text evaluation with focus areas and debug capabilities
judge essay.txt --criteria clarity,accuracy,coherence --context "academic writing" --include-criteria
judge code.py --context "code review" --format plain --verbose --debug
judge README.md --focus "technical accuracy,examples" --temperature 0.05 --max-output-tokens 8000
# Advanced evaluation scenarios
judge document.txt --debug --provider lmstudio --model qwen/qwen3-next-80b
judge proposal.md --focus "architectural diagrams, technical comparisons" --debug
judge multiple_files.txt --exclude-global --reference reference.md
Key Parameters
Parameter | Options | Default | Description |
---|---|---|---|
--context |
Any text | None | Evaluation context (e.g., "code review") |
--criteria |
clarity,soundness,effectiveness,etc. | Default set | Standard evaluation criteria |
--custom-criteria |
Custom comma-separated list | None | Custom evaluation criteria |
--format |
json, plain, yaml | json | Output format |
Available Criteria
Common Parameters
Parameters available across all three applications:
Parameter | Description | Example |
---|---|---|
--provider + --model |
Use different LLM providers | --provider=openai --model=gpt-4o-mini |
--output |
Save results to file | --output=results.txt |
--verbose |
Show detailed progress | --verbose |
--timeout |
HTTP timeout (seconds) | --timeout=600 |
📋 Complete CLI Parameters Reference
Comprehensive parameter documentation for all applications with enhanced features.
Extractor Parameters
# Core parameters
--focus FOCUS # Specific focus area (e.g., "technology", "business")
--format {json-ld,triples,json,yaml} # Output format
--entity-types TYPES # Comma-separated types (person,organization,location,etc.)
--output OUTPUT # Output file path
# Performance & Quality
--mode {fast,balanced,thorough} # Extraction mode (balanced=default)
--iterate N # Refinement iterations (default: 1)
--similarity-threshold 0.0-1.0 # Entity deduplication threshold (default: 0.85)
--no-embeddings # Disable semantic deduplication
--minified # Compact JSON output
# LLM Configuration
--provider PROVIDER --model MODEL # Custom LLM provider/model
--max-tokens 32000 # Context window (default: 32000)
--max-output-tokens 8000 # Output tokens (default: 8000)
--timeout 300 # HTTP timeout seconds (default: 300)
--chunk-size 8000 # Chunk size for large files
Judge Parameters
# Evaluation Configuration
--criteria CRITERIA # Standard criteria (clarity,soundness,etc.)
--focus FOCUS # Primary focus areas for evaluation
--context CONTEXT # Evaluation context description
--reference FILE_OR_TEXT # Reference content for comparison
# Output & Debug
--format {json,plain,yaml} # Output format (default: json)
--debug # Show raw LLM responses
--include-criteria # Include detailed criteria explanations
--exclude-global # Skip global assessment for multiple files
# LLM Configuration
--temperature 0.1 # Evaluation consistency (default: 0.1)
--max-tokens 32000 # Context window (default: 32000)
--max-output-tokens 8000 # Output tokens (default: 8000)
--timeout 300 # HTTP timeout seconds
Summarizer Parameters
# Content Configuration
--style {structured,narrative,objective,analytical,executive,conversational}
--length {brief,standard,detailed,comprehensive}
--focus FOCUS # Specific focus area
--chunk-size 8000 # Chunk size for large files (max: 32000)
# Output & Performance
--output OUTPUT # Output file path
--max-tokens 32000 # Context window (default: 32000)
--max-output-tokens 8000 # Output tokens (default: 8000)
--verbose # Show detailed progress
📁 Media Handling with @filename Syntax
All CLI apps support universal media handling with simple @filename
syntax for analyzing images, PDFs, Office documents, and data files.
Supported File Types
- Images: PNG, JPEG, GIF, WEBP, BMP, TIFF (analyzed via vision models)
- Documents: PDF, DOCX, XLSX, PPTX (text extracted automatically)
- Data Files: CSV, TSV, TXT, MD, JSON (parsed intelligently)
CLI Examples
# Summarize PDF document
summarizer @report.pdf --style executive
# Extract entities from Office document
extractor @presentation.pptx --format json-ld
# Evaluate document with image reference
judge @document.docx --reference @original.pdf
# Multiple files
summarizer @chapter1.pdf @chapter2.pdf --length comprehensive
# Mixed media - combine chart analysis with data
extractor "@sales_chart.png What trends do you see?" --focus "business metrics"
Learn more: Media Handling System Guide and Vision Capabilities Guide
Related Documentation
Centralized Configuration
Set default providers and models once, never specify again
Configure CLI Apps →Media Handling System
Universal file attachment across all apps with @filename syntax
Learn Media Handling →Vision Capabilities
Image analysis with vision fallback for text-only models
Explore Vision Features →